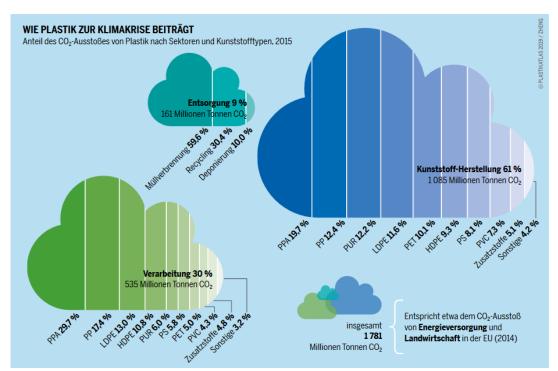


Sascha Roth, 27.11.2019

International Recycling Forum, Wiesbaden



Presentation structure

- A. Overview Environmental aspects of plastics
- B. Current usage of plastics and why it is wrong
- C. Goal: eco-friendly usage of plastics in between planetary boundaries
- D. Agenda for an eco-friendly plastics production and usage

99 percent of plastic are fossil based (coal, oil and gas)

EU Commission plans "first European Climate Law to enshrine the 2050 climateneutrality target into law"

In a business as usual scenario, plastic production until 2050 will be responsible for 10-13 percent of the limited CO₂-budget to achieve the 1,5° target

Source: BUND-Plastikatlas 2019

Additives (plasticizers/fluorinated compounds/ brominated flame retardants/endocrine disruptors) harm health and environment

Extreme lack of transparency of the chemicals in most plastic and its production processes prevents a full assessment of its impacts

Sources: www.ciel.org

www.theguardian.com

Food packaging is full of toxic chemicals - here's how it could affect your health

If you care about what you eat, you should care about what it comes in

(Micro) plastic pollution in the environment

Source: NABU/N. Möllmann

(Micro) plastic pollution in the environment

- In Marine environment, but pollution of soil and inland waters 4-23 times higher
- Steady pollution
- Plastic is persistent (we don't know the degradation time)

Source: NABU

Mikroplastik in Deutschland – die zehn wichtigsten Quellen

Jährlich pro Person freigesetzte Mengen

~1.230g Reifenabrieb (davon 88 % Pkw)

~120g Freisetzung auf Baustellen

~230g Abrieb Bitumen in Asphalt

~110g Abrieb Schuhsohlen

~180g Pelletverluste

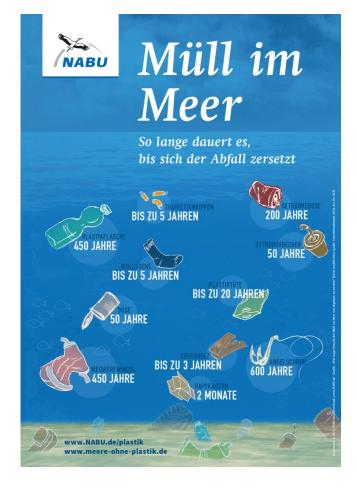
~100g Abrieb Kunststoffverpackungen

~165g Freisetzung bei Abfallentsorgung

~90g Abrieb Fahrbahnmarkierungen

~130g Verwehungen Sportund Spielplätze

~80g Faserabrieb bei der Textilwäsche



Source: NABU

Plastics create mass consumption...

© NABU/G. Rottmann, S. Hennigs (2x) , S. Kühnapfel, E. Neuling

© ALBA (links), MVA Düsseldorf (mitte), NABU/Ludwichowski (rechts)

... mass disposal

How we use plastics

TOO MUCH!

IN THE WRONG WAY!


IN A NON-CIRCULAR DESIGN!

Sources: Ellen MacArthur Foundation

NABU

Verpackungsabfälle aus Kunststoff Steigerung

How NABU imagines an eco-friendlier plastic usage in the future

- 1. Much less (use of re-usable solutions in the packaging sector and beyond) no substition
- 2. Eco-friendlier feedstock (ressource-efficient/bio-based)
- 3. High reduction of "hazardous" additives in the production sector
- 4. Design for Recycling
- 5. High content of recyclates

Much less

https://initiative-frosch.de/mondi

https://www.originalrepack.com/

Source: gdb.de

Eco-friendlier feedstock

- Current biobased alternatives are not convincing (LCA show pros and cons)
- •Minimum requirements: eco-certified standards for biobased plastic production (biodiversity/GMO/Land use change)
- Preferably: Usage of non-recoverable residues from biomass sectors)
- Concentration on "drop-in" plastics

Charakterisierungsfaktor	Tendenz zu Biopolymeren	Begründung seitens der Biopolymere	Begründung seitens der konventionellen Polymere
Energieverbrauch	\Leftrightarrow	Unterschiedlicher Energieverbrauch für verschiedene Biopolymere	Unterschiedlicher Energieverbrauch für verschiedene konventionelle Polymere
Treibhausgaspotential	1	Hohe CO ₂ Aufnahme während des Pflanzenwachstums	Hohe CO ₂ Emission während thermischer Verwertung
Abiotische Ressourcenverbrauch	1	Bio-basierte (erneuerbar)	Erdől-basierte (endlich)
Eutrophierungspotential	-	Verbrauch von Düngemittel und Pflanzenschutzmittel	Nicht notwendig
Versauerungspotential	-	Verbrauch von Düngemittel und Pflanzenschutzmittel	Nicht notwendig
Landnutzung	•	Agrarfläche notwendig	Keine Agrarfläche notwendig
Wasserverbrauch	-	Prozesswasser und Wasser für die Bewässerung	Nur Prozesswasser

End-of-life options for BIOPLASTICS

— Closing the loop —

Bio-based & durable plastic products

Bioplastics granulates

Wechanical recycling bin

Plastic recycling bin

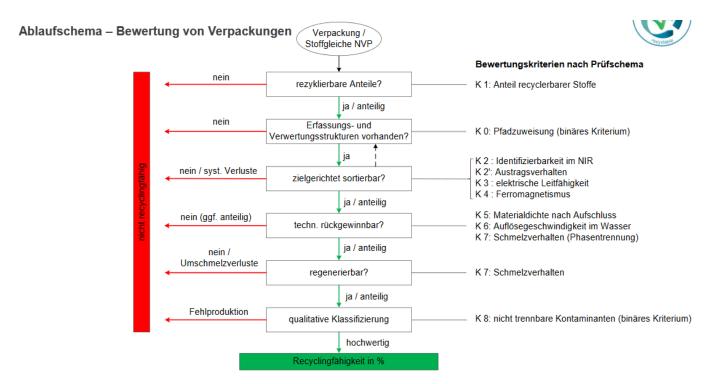
Bio-gas

Separate collection of biowaste biowaste recturent industrial compost plant

Source: European Bioplastics www.ifbb-hannover.de

Reduction of "hazardous" additives

- •Research on the impact of micro- and nanoparticles concentrante mainly on marine environment, while impacts on human health received much less attention
- •Precautionary principle has to be applied at every life cycle stage (esp. Polyurethanes/ PVC/ epoxy resins/ PS → mandatory declaration along the supply chain helps consumers and recyclers
- •Better scrutiny in controlling plastic products from importeurs
- Producers should be forced to highlight the use of chemicals (esp. Toys/furniture/textils)



Design for Recycling

- Extending producer responsibility into after-use phase
- •Realizing "low hanging fruits" (different colours/different adhesives/ monomaterials)
- Lack of knowledge in the design process
- Modular design (e.g. electronical waste)
- Confusion because of many differing guidelines

Design for Recycling (II) – German example for measuring recyclability

The role of chemical recycling in the future

Current situation: Many questions regarding LCA, energy efficiency, treatment of residues, quality of recyclates

Promising areas of application: Recycling of mattresses, recycling of E-waste with brominated flame retardands

BUT

- •Pyrolysis-products must become plastics not gas in order to be labelled chemical *recycling* (carbon must stay in the product)
- •Chemical recycling is not an answer to the lack of design for recycling (Primacy of material/mechanical recycling as indicated in the EU waste hierarchy)
- •High expenditures for sorting and logistics mean high margins of needed plastic waste → competition to mechanical recycling

The role of chemical recycling in the future (II)

Legal requirements

- Legal definition for chemical recycling on EU-level
 - must exclude processes, where plastic is not transformed in new plastic
 - ➤ Must exclude processes, where CO₂ emissions are equal or higher than in the virgin material production
- ➤ Chemical recycling should only be allowed to recycle degrated and contaminated plastics which can't be recycled mechanically
- Establishing verification systems, so that chemical recycling plants do not produce energy fuels
- Additional step in the waste hierarchy below mechanical recycling and above energy recovery (only for mixed waste streams who would be burned otherwise)

Agenda for an eco-friendly plastics production and usage

"I want Europe to lead on the issue of single use plastics... I want to open a new front in our fight against plastic waste by tackling micro-plastics." (Ursula von der Leyen, President of the European Commission – EU Green Deal)

Future tasks of EU circular economy policy

- •Prioritise waste prevention within Extended Producer Responsibility (EPR) Schemes: All EPR schemes should support waste prevention by financing and promoting reuse of waste and products and using eco-modulation of fees to discourage non-circular products.
- •Phasing out hazardous substances through requiring information provision on chemicals and not reducing thresholds for secondary materials
- •Supporting waste prevention and reuse in the packaging sector through zero waste, refillable/deposit refund systems and waste prevention targets
- •Making green procurement the default approach for public authorities and for companies engaged in corporate social responsibility

NABU-Bundesgeschäftsstelle Sascha Roth Charitéstraße 3 10117 Berlin Tel. +49 (0)30.28 49 84-1660 sascha.roth@NABU.de www.NABU.de