

Alban COTARD Development, sales and quality manager.

INTRODUCTION TO CHEMICAL RECYCLING

27th of November 2019 - Wiesbaden

Who is Valorplast?

A strong and visionary shareholding since 1993

- Non Profit policy
- Historical partner of EPR
- Guarantee of recovery

Plastics Europe

 European professional association representing producers of plastics

ELIPSO

 Professional union representing plastic and flexible packaging industry

Fédération de la Plasturgie

Organization representing French plastics industry

Created to meet a major goal:

increase the recycling rate of household plastic packaging in France

- 57 % OF FRENCH MUNICIPALITIES UNDER CONTRACT
- 133 SORTING CENTERS
- 710 MONTHLY TRANSPORTS
- 30 INDUSTRIAL RECYCLERS WITH LONG TERM RELATIONSHIP
- 151 400 TONS OF HOUSEHOLD PLASTIC PACKAGING RECYCLED (50%)
- 75 % RECYCLED IN FRANCE
 25 % IN EUROPE
 NO EXPORT

Why chemical recycling?

AMBITIOUS TARGETS:

- current european plastic recycling rate: 28%
- target: 55 % of recycling by 2030
- → Need to work with feedstock more difficult to recycle

LIMITS OF MECHANICAL RECYCLING:

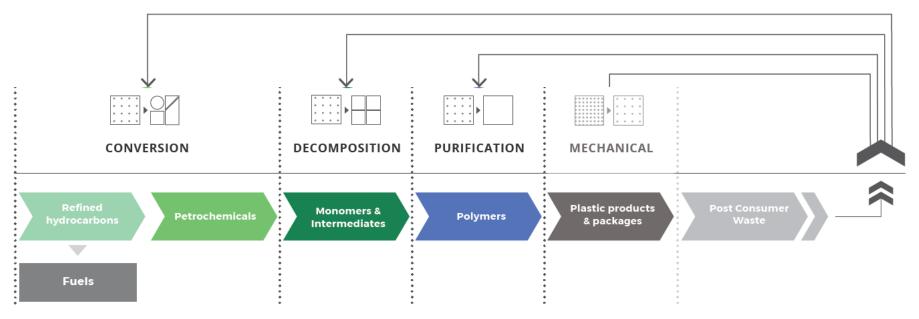
- difficulties to handle multilayers products
- deinking / discoloration of plastics
- food contact for most polymers (PP, PE, PS)
- desodorisation of recycled plastics
- removal of forbidden substances (REACH, POP, RoHS)
- → Need to find new processes to solve these issues
- → CHEMICAL RECYCLING MAY BE ONE SOLUTION

MECHANICAL RECYCLING:

refers to processes which involve the reprocessing of plastic by melting, shredding or granulation

without significantly changing the chemical structure

CHEMICAL RECYCLING:


Conversion to monomer or production of new raw materials by changing the chemical structure of plastics waste through cracking, gasification or depolymerization

excluding energy recovery and incineration!

DATA AFTARA

Process categories

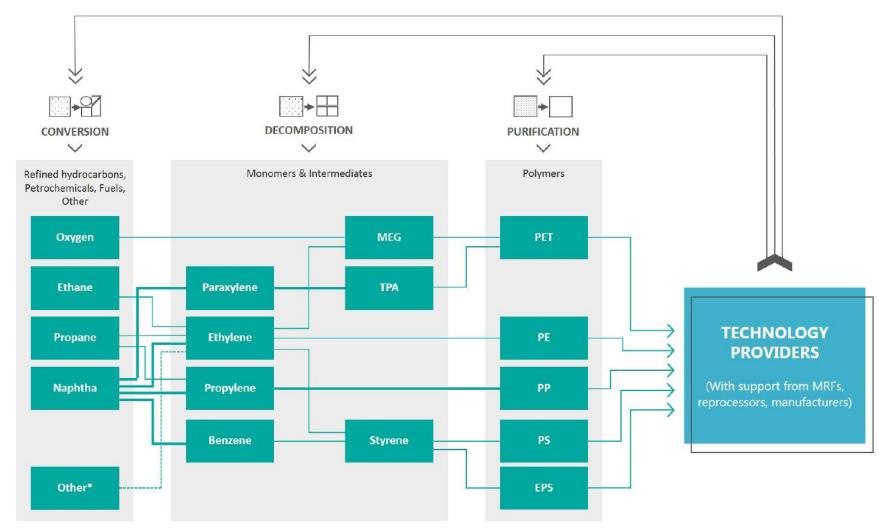
PURIFICATION: → involves dissolving plastic in a solvent

→ applicable for PVC, PS, PE, PP

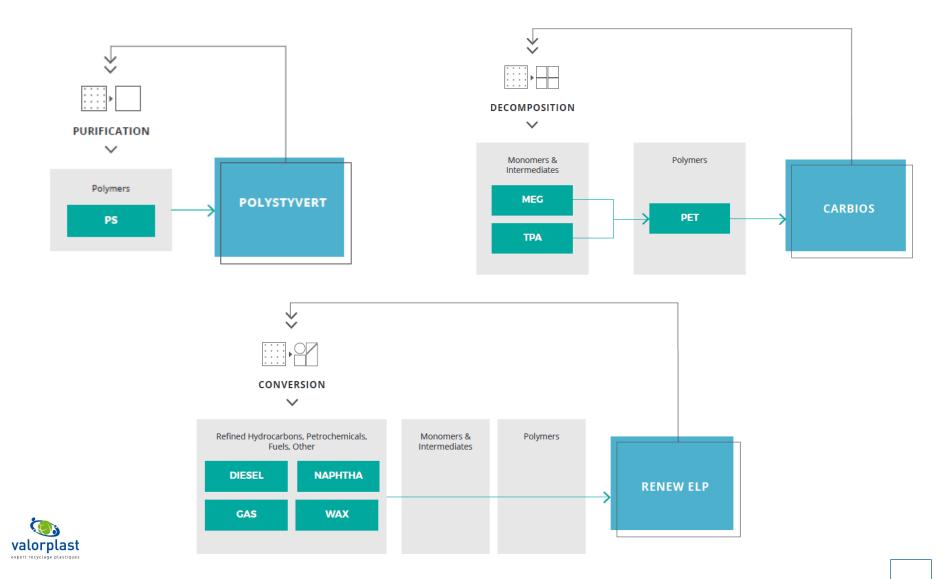
DECOMPOSITION (or depolymerisation):

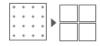
→ breaking molecular bonds to recover monomers

→ PET, PU, PA, PC, PEF


CONVERSION: \rightarrow thermal depolymerisation and cracking (pyrolisis and gasification)

→ breaking further molecular bonds (liquids or gaseous hydrocarbons)


What we can get?


Few examples

PURIFICATION

Refined hydrocarbons

Petrochemicals

Monomers & intermediates

Polymers

Fuels

30

14

2 I

REFINED HYDROCARBONS, PETROCHEMICALS, FUELS, OTHERS

- + Agile Process Chemicals LLP
- + Agilyx
- + Anhui Oursun

- + Polycycl
- + Pyrowave
- + Reclaimed EcoEnergy

MONOMERS & INTERMEDIATES

- + Agilyx
- + Axens
- + Biocellection

POLYMERS

- + APK
- + Aquafil
- + Cadel Deinking

Pilot:

Upscaling to industrial level:

Being implemented in various parts of the world:

+ Fulcrum BioEnergy

+ Global Electric Electronic

Processing

- + Golden Renewable Energy
- + GreenMantra Technologies
- + Illinois Sustainable

Technology Center

- + JBI Plastic2Oil
- + Jeplan
- + Klean Industries
- + New Hope Energy
- + Nexus Fuels
- + Plastic Energy

- The Venneylyania State

University

+ Vadxx

+ perPETual

- + Pyrowave
- + Tyton BioSciences
- + University of Massachusetts-

Lowell

+ University of Portsmouth &

U.S. Department of Energy's

National Renewable Energy

Laboratory

+ Illinois Sustainable Technolog

13

28

Center

- + Natureworks
- + Next Generation
- + Polystyvert
- + PureCycle Technologies
- + Resinate Materials Group
- + RESYNTEX
- + SABIC Innovative Plastics
- + TRASH2CASH
- + University of Massachusetts-

Lowell

- + University of Ulsan
- + Worn Again Technologies

Points to clarify

- What type of waste can be accepted?
 - required level of quality and preparation
 - No miracle: "garbage in, garbage out"
- Will quality be equivalent to virgin material?
 - Importance of purification step
- Are these processes sustainable?
 - Energy consumption and environmental impacts
 - output cost in line with market level?
- -Time to market? From lab to plant..... from kilo to tons of material
- Plant size ? minimum / optimum capacity
 - Local / national / international sourcing
- Regulatory situation?
 - will chemical recycling count for recycling rate? traceability?

Thank you

a.cotard@valorplast.com

